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ANALYSIS OF LAYERED COMPOSITE PLATES BY

THREE-DIMENSIONAL ELASTICITY THEORY

Abstjo

This report contains two parts: the first part is concerned with

the natural vibrations of laminated anisotropic plates, and the second

part is concerned with geometrically nonlinear, finite-element analysis

of the bending of cross-ply laminated anisotropic composite plates.

Individual laminae are assumed to be homogeneous, orthotropic and

linearly elastic. A fully three-dimensional isoparametric finite element

with eight nodes (i.e., linear element) and 24 degrees of freedom (three

displacement components per node) is used to model the laminated plate.

The finite element results of the linear analysis are found to agree very

well with the exact solutions of cross-ply laminated rectangular plates

under sinusoidal loading. The finite element results of the three-

dimensional, geometricall nonlinear analysis are compared with those

obtained by using a shear deformable, geometrically nonlinear, plate

theory. It is found that the deflections predicted by the shear defor- '..

mable plate theory are in fair agreement with those predicted by 3-D

elasticity theory; however, stresses are found to be not in good agree-

ment. The results of natural vibration indicate that for relatively

thick plates, the shear deformable plate theory predicts frequencies

higher than those predicted by the 3-D theory.
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NATURAL VIBRATIONS OF LAMINATED ANISOTROPIC PLATES
USING 3D-ELASTICITY THEORY

J. N. Reddy
Department of Engineering Science and Mechanics

and

T. Kuppusamy
Department of Civil Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The paper contains a description of the three-dimensional

elasticity equations and the associated finite element model for natural

vibrations of laminated rectangular plates. The numerical results for

natural frequencies are compared with those obtained by a shear

deformable plate theory. A number of cross-ply and angle-ply

rectangular plates are analyzed for natural frequencies. For relatively

thick plates, the plate element predicts frequencies higher than those

predicted by the 3-n element.



INTRODUCTION

The present study is motivated by the lack of three-dimensional

finite-element results for natural frequencies of laminated composite

plates. For relatively thick plates (i.e., for side-to-thickness ratios

less than 10), the classical plate theory and certain thick plate

theories predict higher frequencies, and therefore it is of interest to

have a 3-D finite element to accurately predict natural frequencies.

The following literature provides the background for the present study.

The shear deformable plate theory (see Reissner [1] and Mindlin

[2)) is a twc-dimensional theory derived from the assumption that the

strains E, E, and e are independent of z, which leads to thestrais z'Cxz' yz

displacement field of the form

u = uo(X,y) + Zc (X,y)

v = vo(X,y) + Z4, y(X,y)

w = wo(X,y). (1)

Here u0, vo, and wo denote the displacements along x, y, and z

directions respectively of a point located on the midplane of the plate,

which coincides with the xy-plane of the coordinate

system; 4x and 4, denote the rotations (taken clockwise positive) of a

Iy

line element, initially perpendicular to the midplane, about y and x

axes, respectively. The classical plate theory is a special case

(derived from the assumption that E = = = 0) of the shearz xz y z

deformable plate theory in which the transverse shear strains are

assumed to be zero:

bw aw4, , =~
.x ax 0 '4. y .. y 0 (2)
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The classical plate theory is based on the Kirchoff-Love assumption that

planes initially normal to the midplane remain plane and normal to the

mldsurface after bending, i.e., equivalently, conditions in Eq. (2)

hold.

The first lamination thin plate theory is due to Reissner and

Stavsky [3]. An extension of the thick plate theory to arbitrarily

laminated anisotropic plates was presented by Yang, Norris, and Stavsky

[4]. Whitney and Pagano [5], and Reddy and Chao [6] presented exact

solutions of the theory when applied to laminated rectangular plates

under certain lamination schemes, boundary conditions, and sinusoidal

distribution of transverse loads. Reddy and his colleagues [7-12]

presented finite-element analyses of the bending, vibration and

transient response of laminated anisotropic composite plates.

The three-dimensional lamination theory is based on the assumption

that the individual lamina behave according to the 3-D elasticity

theory. At the interfaces of individual lamina, the displacements are

assumed to be continuous. Dana and Barker [13] used the cubic

isoparametric brick element and Putcha and Reddy [14] used the linear

brick element to investigate the bending of layered plates. Recently,

Kuppusamy and Reddy [15] used the linear isoparametric brick element to

study the geometrically nonlinear behavior of laminated plates. The

present study is concerned with the application of the linear brick

element to the natural vibration of laminated composite plates.

GOVERNING EQUATIONS

Consider a plate arbitrarily laminated of a finite number of

orthotropic layers of uniform thickness. The equations of motion of a

three-dimenslional elastic continuum under the assumption of

II
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infinitesimal strains, in the Lagrangian description, are given by

3 ba(k) 2 u (k)

E . = p(k)- a, i =1,2,3, (3)
j=1 aia

where k) ( ) denote the components of the Cauchy stresswhe i j deno

tensor, p(k) is the density, and uk) are the displacement components of

the k-th layer. All of the variables are referred to the plate

coordinates xi. It is assumed that there are no body forces in the

problem. At the interface of two layers it is assumed that the

displacements are continuous.

u(k) = u (k+1) (4)

The strain-displacement relations are given by

1il + a-jI , ij = 1,2,3. (5)

The stress-strain relations, for individual lamina, in the plate

coordinates are given by

6
-(k) Z c(k)e(k) , i = 1,2,...,6, (6)

where

S= 11, 02 022' a3 =033' 04 023' 05 13, 06 012'

1 =111 c2 = £22' £3 £ 333 E4 = 2E239 £5 = 2£13' £6 = 2£12'(7)

and clk are the material stiffnesses of k-th layer referred to the

ij

plate coordinates.
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Equations (2), (3), and (6) are to be solved using appropriate

boundary conditions. At a point on the boundary of the plate, one

should specify:

either u, = ui (I = 1,2,3),

or -lo0 - ti (I = 1,2,3), (8)

where ni denotes the j-th component the unit outward normal n to the

boundary, and ui and ii denote specified values of the displacement and

traction components.

FINITE-ELEMENT MODEL

The variational formulation of Eqs. (2), (3), and (6), over a

typical element 6e, is given by

0 f e (6uiajaj + tP6ui at ) dxdydz - Ie njaijtids (9)

where 6 denotes the variational symbol. Let ui be interpolated over the

element Qe by

8
u E u (i = 1,2,3) (10)ui  =l i. uI

where fa(x,y,z) denote the trilinear interpolation functions of the

eight-node isoparametric brick element, and ua(t) denote the value of ui

at node a and time t. Substitution of Eq. (10) into Eq. (9), we obtain

L symm[M ]j U31) VYmm' K I~j l~
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SI F2} (11)

I F31

where [KiU] and [Mij] are coefficient matrices associated with

vector {u.} in the i-th equation. For the sake of brevity the explicit

form of the coefficients is not given here. The mass and bending

coefficients are to be evaluated using full integration and the shear

coefficients (in [K]) are to be evaluated using the reduced integration.

To investigate the free vibration, we set {Fi} = {0}, and

a a PAtui = u oe (i = 1,2,3; a 1,2,...,8) (12)

where p = 7T and w denotes the frequency of natural vibration.

Substitution of Eq. (12) into Eq. (11) gives the following generalized

eigenvalue problem:

([K] - w [M])IA} = 101, (13)

where tA} = 11u101, lu201, {u301}1. Equations (13) are assembled in the

usual manner, and (homogeneous) boundary conditions are imposed before

solving the eigenvalue problem by any standard eigenvalue program.

NUMERICAL RESULTS

In all of the examples considered here, the biaxial symmetry is

exploited to model only one quadrant of the plate. The quadrant is

modeled using 4 x 4 x n mesh of the eight-node brick elements. Here n

denotes the number of layers in the plate. The following two types of

high-modulus composite materials are used in the present study:

Material I: E1/E2=25, E3/E2=1, G12/E2 -G13/E2=O.5, G2 3 /E2 =O.2

v 12 v 13V23=0.25, p=1.0

13 23



Material II: E 1/E 2 =40, E 3/E 2=1, G12 /E2=G 13 /E 2=0.6, G 23/E 2=0.2

V1=V1=V2=02,P=1.0. (14)

A value of 5/6 is used for the shear correction coefficient, K2. The1*

boundary conditions used in the present study are shown in Fig. 1.

The first example is concerned with three-layer cross-ply square

plates: 00/900/00, hl = h3 = h/4, h2 = h/2. This is also equivalent to

four-layer cross-ply (0o/900/900/0o) laminate made of equal thickness

layers. Table 1 contains a comparison of the fundamental frequencies

obtained by the plate thieory [6] and the present 3-0 elasticity

theory. It is clear from the results that the solutions predicted by

the shear deformable plate theory are higher than those predicted by the

3-Delasticity theory; of course, the classical thin plate theory

predicts even higher frequencies. The difference can be explained as

follows: in plate theories, the transverse shear strains and normal

strains are either completely neglected (like in the classical plate

theory) or included in an approximate sense (e.g., the transverse shear

strains are included in the shear deformable plate theory).

Consequently, the modeled plate is stiffer than the actual one. Due to

the lower value of the shear modulus relative to the in-plane Young's

moduli, the transverse shear deformation effects are more pronounced in

composite plates. In the 3-D theory, no assumption is made to neglect

the shear or normal strains, and therefore the frequencies predicted are

more accurate (and realistic). For large ratios of side to thickness,

the transverse shear strains and normal strains are negligible and

therefore both theories predict almost the same frequencies. It is also

clear from the results presented in Table 1 that the degree of material
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(a) Boundary conditions for angl-Ply plates (BC)

crb-l and anlepy=lae
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anisotropy as well as plate aspect ratio adversely affect the accuracy

of the frequencies predicted by the plate theory.

The second example is concerned with the vibration of a square

sandwich plate. The material of the face sheets is the same as Material

I, and that of the core is transverselyisotroplc with the following

properties:

E1/E 2= 1.0, E3/E2 = 12.5, p = 1.0

G13 w G23 = ME 2 , G1 2  2 2
v12 = 0.25, v 13 = v23 =0.02. (15)

The thickness of each face sheet is O.lh and that of the core is 0.8h.

Table 2 contains the nondimensionalized frequencies obtained using the

3-D elasticity theory. These results should serve as bench marks for

future comparisons.

Table 3 contains nondimensionalized natural frequencies of two-

layer cross-ply (0°/90° ) and angTe-ply (45*/-450) square plates. From

the results presented in Table 3 and 4, it follows that two-layer cross-

ply plates have lower frequencies than both two-layer angle-ply plates

and four-layer cross-ply (00/900/900/00) plates (of equal thickness

layers). On the other hand, the two-layer angle-ply plates have higher

frequencies than the cross-ply plates analyzed here. These observations

indicate that the two-layer cross-ply laminates are structurally more

flexible whereas the two-layer angle-ply laminates are more stiffer than

the four-layer (00/900/900/00) cross-ply plates.

The results of the natural vibration of four different laminations

of four-layer angle-ply square plates are discussed next. Table 4

contains the nondimensionalized frequencies of the following four cases

of laminates:
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Table 1. Nondimensionallzed fundamental frequency, x =2 of

three-layer cross-ply (00/900/00), simply supported plates

(hj = h3 = h/4, h2 = h/2).

Material I Material 1I
Finite Element Method percentage Finite Element Method percentage

b/a a/h Plate Theory 3-D Theory error Plate Theory 3-0 Theory error

5 8.831 8.317 -6.18 9.896 9.119 -8.52
1 10 12.380 11.805 -4.87 14.451 13.370 -8.09

(12.233)t (14.295)t
100 15.474 15.473 -0.0065 19.177 18.959 -1.15

3 10 - - - 12.555 11.338 -10.734

tobtained using 2x2 mesh of nine-node elements.

Table 2. Nondimensionalized frequencies of a square sandwich plate with simply
supported boundary conditions. (b/a = 1; h1 = h3 = 0.lh, h2 = 0.8h;
3D-Theory

Mode 1 2 3 4 5 6 7

a/h

10 11.132 32.881 37.153 71.787 78.006 79.616 83.380
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Table 3. Nondimensionalized fundamental frequencies of two-layer (00/900 or-450/450) square plates with simply supported boundary
conditions (a/b = 1, a/h = 10, hi = h/2; 3D-Theory)

Lamination Material I Material II

Scheme 1 2 3 4 1 2 3 4

00/900 9.176 44.094 44.044 60.886 10.563 48.806 48.806 67.032

450/-450 16.668 33.816 36.723 46.929 17.826 37.690 39.260 51.305

Table 4. Nondimensionalized fundamental frequencies of angle-ply square plates

(material I, a/h = 10)

-450/450/45 3D Theory
Mode 3D Plate 450/00/450 -30-/30'/-30- -300/00/.300

1 16.483 15.282 18.246 16.602 16.141
(16.546)t

2 34.044 34.100 36.565 34.513 33.615
(36.1 29)

3 35.051 45.062 46.484 45.975 48.984
(46.273)

4 45.753 46.591 4q.281 47.845 52.255
(64.354)

tthe numbers in parenthesis correspond to the case in which the inplane
inertias are omitted.

-I -. 3 . ..tI



1. (-450/450/-450), h1 =h 3 = h/4, h2 = h/2, a/h = 10

2. (-450/00/-45°), h1 = 3 = h/4, h2 = h/2, a/h = 10

3. (-300/300/-300), h1 = h3 = h/4, h2 = h/2, a/h = 10

4. (-30o/0o/-30o), h1 = h3 = h/4, h2 = h/2, a/h =l0

The material properties used are those of material I. Table 4 also

contains natural frequencies for Case 1 when the inplane inertias are

omitted. It is clear that the effect of the inplane inertia is to

reduce the frequencies, and this reduction has .significant effect on

higher modes.
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A THREE-nIMENSIONAL NONLINEAR ANALYSIS OF CROSS-PLY
RECTANGULAR COMPOSITE PLATES

T. Kuppusamy
1 and J. N. Reddy

2
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Abstract

The results of a three-dimensional, geometrically nonlinear,

finite-element analysis of the bending of cross-ply laminated

anisotropic composite plates are presented. Individual laminae are

assumed to be homogeneous, orthotropic and linearly elastic. A fully

three-dimensional isoparanetric finite element with eight nodes (i.e.,

linear element) and 24 degrees of freedom (three displacement components

per node) is used to model the laminated plate. The finite element

results of the linear analysis are found to agree very well with the

exact solutions of cross-ply laminated rectangular plates under

sinusoidal loading. The finite element results of the three-

dimensional, geometrically nonlinear analysis are compared with those

obtained by using a shear deformable, geometrically nonlinear, plate

theory. It is found that the deflections predicted by the shear

deformable plate theory are in fair agreement with those predicted by 3-

n elasticity theory.

lAssistant Professor of Civil Engineering.

2Professor of Engineering Science and Mechanics.

r



15

1. INTRflDUCTION

Composite materials exhibit higher stiffness-to-weight ratios and

increased corrosion resistance compared to isotropic materials. The

anisotropic material properties of layered composites can be varied by

varying the fiber orientation and stacking sequence. While this feature

gives the designer an added degree of flexibility, the stiffness

mismatch of the orthotropic layers bonded together with different fiber

orientations leads to interlaminar stresses in the vicinity of free

edges. For certain stacking sequences, loading, and boundary conditions

interlaminar stresses can be so large that they dictate the design of

the structure.

Analyses of layered composite plates can be divided into two

groups: (i) analyses based on a laminate plate theory, and (ii)

analyses based on a three-dimensional laminated (elasticity) theory.

The laminated plate theory is the extension of the classical plate

theory (CPT) or the Reissner-Mindlin shear-deformable plate theory (SDT)

to layered composite plates. The first lamination theory including

bending-stretching coupling is apparently due to Reissner and Stavsky

Pl. Yang, Morris, and Stavsky [21 presented a generalization of the

Reissner-Mindlin thick-plate theory for homogeneous, isotropic plates to

arbitrarily laminated anisotropic plates. Whitney and Pagano [31 (also

see Reddy and Chao [4]) presented closed-form solutions to the theory

when applied to certain cross-ply and angle-ply rectangular plates.

Reddy [5] presented a finite-element analysis of the lamination

theory. A higher-order lamination theory that accounts for a cubic

variation (as opposed to linear in [2-5]) of the inplane displacements

and quadratic variation of the transverse displacement through the
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thickness was presented by Lo, Christensen, and Wu [6], and hybrid-

stress finite-element analysis of the theory was presented by Spilker

[7].

In laminated plate theory it is assumed that the laminate is in a

state of plane stress (as assumption carried from the classical plate

theory) and integrals through the thickness of a laminate are equal to

the sum of integrals through the thickness of individual laminae. These

assumptions lead to inaccurate prediction of interlaminar stresses at

the free edges, although the solution is reasonably accurate away from

free edges. The laminate plate theory is not accurate in a boundary

layer region which extends inward from the edge to a distance

approximately equal to the laminate thickness.

The fully three-dimensional laminate theory is an extension of the

elasticity theory of a three-dimensional solid composed of layers of

different material properties. Pipes and Pagano [8] and Pipes [9] used

a finite-difference technique to solve the quasi-three-dimensional,

linear, elasticity equations for laminates (also see Hsu and Herakovich

[10]). Lin [ill], fana r12], and Fana and Barker [13] used a cubic,

three-dimensional, isoparametric element with 72 degrees of freedom to

analyze laminated plates (also see Putcha and Reddy [14]). The

numerical results in these studies agree very well with those of Pagano

[I Sl 6].

The present study is motivated hy the lack of finite-element

results for three-dimensional, geometrically nonlinear analysis of

layered anisotropic composite plates. A finite-element formulation of

the geometrically nonlinear theory of a laminated, three-dimensional,

elastic continuum is presented. Numerical results of the linear as well
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as nonlinear analysis are presented for several cross-ply plate

problems. The formulation is validated by comparing the present results

of the linear analysis with those of Pagano [15,16]. The results of the

nonlinear analysis should serve as bench mark results for future

investigations.

2. GOVERNING EQUATIONS

Consider a laminate (9) composed of N orthotropic layers with axes

of elastic symmetry parallel to the plate axes. The laminate is

subjected to normal traction t 3 = q(x1 'x 2) at its upper surface (i.e.,

x3 = h/2). The constitutive equations for any layer are

given by

"'11 -C11 "C12 "C13 0 0 0 Ell11

a2 C12 C22 '23 n 0 0 C22

a33 13 2 3  0 0 33 (1)

a23 0 0 0 C44  0 0 223

"13 0 0 0 0 C55  0 2e13

-12 0 0 0 0 0 T66  2712

where ij and are the components of the stress and strain tensors,

respectively, defined in the material-coordinates, andcij are the

material stiffness coefficients. The coefficients, Cij = ji , are given

in terms of the engineering constants by (see Jones [17])

C11 (l v2 3v3 2 )/"

r 12 = E2 (v1 2 + v32 v13)A

T13 E3 (v13 +12v23)/

% C.
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c22  EP(. v13v31)/A

"23 E3 (v?3 + v21V13)/A

C33 = E3( 12v21

-'44 = 23 7 55  G13  -', 6 6 G12

A =(l - V 12 v2 1 - 23v32 - v31v13 - 2v2 1v31v32), (2)

where

E1,E2,E 3  = Young's moduli in 1, 2 and 3 (material) directions,
respectively

vi j = Poisson's ratio for transverse strain in the J-direction when stressed in the i-direction

G23 ,G13 ,G12 = Shear moduli in the 2-3, 1-3, and 1-2 planes,
respectively. (3)

In view of the reciprocal relations

iiv i V

(4)

there are only nine independent elastic constants for an orthotropic

elastic medium.

The constitutive equations (1) when transformed to the plate

coordinate system take the form

I 11 c12  c13  n 0 0

"22 C12 2?2  C23  0 0 0 £22

"33 = C13  23 33 033 (5)

023 0 0 0 C44  0 0 Y23

"13 0 0 0 0 C55  0 T13

'12 _o 0 0 0 0 C6 j Y22
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where Cij are the transformed plate stiffnesses.

The nonlinear kinematic description of an elastic body yields the

following equations of equilibrium (in the absence of body forces and

moment s)

Sbuiax' [ ij (Smi + xT ] = 0 ij=1,,)

wherein 8mi denotes the Kronecker delta symbol, and the summation

convention on repeated subscripts is used. The strain-displacement

equations of the large-deflection theory of elasticity are given by

1) U. au. au a7- +u i~J +u m -um )(7x + ai F+xi ax7)

To complete the description of the field equations, Eqs. (4)-(6),

and (7) should he adjoined by houndary conditions. At any point of the

boundary of the body one should specify one of the following two types

of boundary conditions:

(i) essential (or geometric) boundary conditions

u u

(ii) natural (or dynamic) boundary conditions

tm njij(Smi + un,i) = ti. (8)

Here nj denotes the j-th component of the unit normal to the boundary,

t. the m-th component of the boundary traction, and u m and tm denote

specified values.

3. FINITF-ELEMENT FORMLATION

Here we present a displacement finite-element model of the

equations (3)-(8). To this end we construct the variational formulation

of the equations over an arbitrary element Q(e) of the finite-element

mesh. We have (see [18, p. 3821)
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o= U tm6umds (9)
Q(e) mj ( 8 i Umi )dx dX 2dx 3  i(e ) m

Here 6 denotes the variational symbol, and aij is given in terms of ui

via Eqs. (4) and (7).

The displacements um are interpolated by expressions of the form,

8
Um a=lE ua¢p (m = 1,2,3) (10)

where a(x,y,z) (a = 1,.,...,8) are the trilinear interpolation

functions of the eight-node isoparametric element in three dimensions,

and ua denotes the value of um at node a. Substituting Eq. (10) into
m m

(9), we obtain

3 8
£ KnlnU + F' - 0 , (m = 1,2,3; a -,2,...,8), (11)

n=l 0=I ao n a

where

mn= f [4 ( 8 .)]dxdx 2 dx 3

Q(e) P nj (n 3=1 n

Fm = f t m( ds , (j,m,n = 1,2,3) (12)a r(e)

Every isoparametric finite element Q(e) of the finite-element mesh

can he generated from the master element via the transformation (see

Figure 2)

xi x
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8
xi (F1 ,{ 2 ,{ 3 ) (i = 1,2,3) (13)

az=l

where 0 are the global coordinates of the element nodes

and (i = 1,2,3) are the local coordinates. Therefore, the integrals

in Eq. (12) can he transformed to the master element and evaluated

numerically using the Gauss quadrature. The transformation of

" to is performed as follows:

3xI 3xl

dx1dx2dx3  (det [J])d&idE2 d&3

where

64I 1 6,2  4 8  -- 1_7

a 2 1 2 3

[J] - 1 x 2 (14)
3x3 21 2 3

841 'l '2 808 ~ 8 8 8
x 31 x2 x U

3x8 8x3

For example, consider

0¢ =¢ f f 1F,

f (e) -F - TX dxidx2dx3  -l - - (FC1 '&2 , 3)d jdE.2dr. 3

m m .
z Z z F1 J (P P9P (15)1=1I~ J=Il :I )IWW

where Pl and WI are the Gauss points and weights, respectively, and the

integrand FiJ (ij = 1,2,3; a,p = 1,2,...,8) is given by

La
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• 3 3 *

E (z ik C j., - ,E)det J](16)
kp 1 k k~

Kk being the elements of the inverse of the Jacobian matrix, [J].

This procedure can be implemented on a digital computer, and the element

coefficient matrices in Eq. (10) can be evaluated numerically. It is

well known that when the ratio of side to thickness of the plate is very

large (i.e., when the plate is thin, say a/h > 20) one should use

reduced integration to evaluate the shear terms (i.e., terms involving

C44, C45 , and C55 ). For a trilinear element, lxlxl Gauss quadrature

must be used to evaluate the coefficients of 044, 055, and 2x2x2 Gauss

rule to evaluate all other terms.

Since the coefficient matrix [K] depends on the unknown solution

vector lul, one should employ an iterative solution procedure to solve

the finite-element equations. Here we use the Picard type iterative

technique, which begins with an assumed displacement field (usually, set

to zero to obtain the linear solution) to compute [K] at the beginning

of the first iteration. In subsequent iterations, solution obtained

from the previous iterations is used to compute [K]. The iteration is

continued until the solutions obtained in two consecutive iterations

differ by a preassigned error margin (say, 1- 4). It is more economical

to use load incremental methods in conjunction with the iterative

technique described above. In other words, for each increment of the

load the increment to the nonlinear solution is obtained (see [lq]).
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4. nISCIISSINN OF THE NUMERICAL RESULTS

Results of the Linear Analysis

In order to validate the present formulation and element, first the

linear analysis of a symmetric three-layer square laminate with

the 'i-direction (of material principal axes) coinciding with the xl-

direction (of the plate axes) in the outer layers and

the x2-direction parallel to the xl-axis in the center layer is

performed. The thickness of the outer layers is assumed to be one-half

of the thickness of the center layer (hi = h3 = h/4, h2 = h/2). The

loading is assumed to he sinusoidal with respect to the xl-x 2 plane,

b q x2 (17)

31' = q cos- cosa b-

and the boundary conditions are of the simply supported type which allow

normal displacement on the boundary, but prevent tangential

displacement. For a quarter plate these imply

at = a/2: 2 = u3 = i = 0

at x I = 0: ul = 0,y 0, tz = 0

at x2 = b/2: u = u3 =y =0

at x2 = 0: u2  0, t = 0, t 0.

The material of the laminae is assumed to have the following values

for the engineering constants

E= 1.724 x 108 kN/m 2 (25 x 106 psi)

E7 E3 6.8Q x 1N6 kN/m 2 (1n psi)
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G12 = = 3.45 x I 6 kN/m 2 (0.5 x 106 psi) (19)

G23 - 13.78 x 106 kN/m 2 (n.2 x in6 psi)

v12 = v31 " v32 = n.75

The following nondimensionalization is used to present the

displacements and stresses:

E 2 h 2  (E2h3 u3)10 
2

1 - 7 U V3 - 4
0a 0 (2n)

(ala2,a12) = 22 (('192,'12) ( 023,a13) = qa (0 2 3 'a 13 )
q 0a 0

The nondimensionalized center deflection u3(,0,f0) obtained using the

laminated plate theory [4,5] and the elasticity theory are presented in

Table 1. One can conclude from the results that the finite element

results obtained by using the reduced integration (R) are in good

agreement with the analytical solution of Pagano [161, and the shear-

deformable plate theory solution [4,5] differs from the 3-D elasticity

solution by about 10% for the problem at hand. The classical plate

theory (CPT) solution differs from the shear deformable plate theory

(SflPT) by 35% for side to thickness ratio of a/h = 10.

The nondimensionalized stresses (-a,, 5 = a13  6 = a12 ) for the

problem are compared in Table 2. We observe that for a/h > 50 the

results obtained using the reduced integration are in good agreement

with the analytical solutions, and for a/h < 20 the full integration

gives better results.

Nondimensionalized center deflection and stresses of three-layer

(hi = h/3) rectangular plates (b/a = 3) of cross-ply (00/900/00)
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Table 1 Nondimensionalized center deflection t in a square cross-ply
(0O/90/O °) plate (h, = h = h/4, h = h/2) under sinusoidal
loading (E2  E3, El' 2512, G12 = 0.SE 2, G23 = 0.2E2 ,
v12 z v23 = 13 ' 0.25)

Shear
Elasticity Solution Deformable Plate Solution[4]

a/h Pagano 2x2x3 4x4x3 2x2x3 4x4x3 CFS 2x2 4x4 2x2 4x4 CPT
[16] F F R R F F R R

2 5.075 5.052 4.986 5.341 5.051 5.063 5.253 5.109 5.525 5.170 0.431
4 1.937 1.841 1.872 1.983 1.906 1.709 1.722 1.713 1.814 1.734 0.431

10 0.737 0.614 0.694 0.734 0.728 0.663 0.590 0.643 0.665 0.663 0.431
20 0.513 0.307 0.437 0.496 0.506 0.491 0.324 0.435 0.476 0.487 0.431
50 0.445 0.091 0.124 0.423 0.438 0.441 0.105 0.245 0.420 0.436 0.431

100 0.435 0.027 0.089 0.412 0.429 0.434 0.032 n.103 0.412 0.428 0.431

h); mesh shown is for a quarter plate; boundary conditions are

tale sam as those shown in Eq. (18).
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Table 2. Comparison of nondimenslonal stressest for three-layer
00/900/00) cross-ply square plate under sinusoidal loading
a/b = 1, h, = h3 = h/4, h2 = h/2).

3D-Elasticity Theory Plate Theory [4)

a Stress Pagano 2x2x3 4x4x3 2x2x3 4x4x3 2x2 4x4 2x2 4x4
wtype [16] F F R R F F R R

01 1.388 0.603 0.676 0.133 0.165 0.259 0.318 0.259 0.318

2 o5  0.153 0.224 0.224 0.179 0.197 0.242 0.286 0.255 0.289

6 0.086 0,047 0.053 0.025 0.031 0.027 0.033 0.028 0.033

1 0.720 0.389 0.456 0.185 0.232 0.302 0.377 0.306 0.379

4 05  0.219 0.182 0.209 0.138 0.205 0.276 0.330 0.293 0.335

06 0.047 0.029 0.034 0.021 0.025 0.023 0.029 0.024 0.029

01 0.599 0.326 0.425 0.268 0.331 0.334 0.451 0.380 0.467

10 05 0.301 0.235 0.281 0.147 0.286 0.316 0.389 0.353 0.400

06 0.028 0.028 0.022 0.015 0.018 0.016 0.022 0.019 0.023

01 0.543 0.240 0.391 0.298 0.364 0.265 0.437 0.404 0.494

20 a5 0.328 0.421 0.342 0.277 0.312 0.303 0.395 0.373 0.420

06 0.023 0.010 0.017 0.013 0.016 0.011 0.018 0.017 0.021

a1 0.539 0.083 0.234 0.308 0.376 0.098 0.279 0.413 0.504

50 05 0.337 0.755 0.990 0.286 0.321 0.252 0.348 0.380 0.427

06 0.021 0.003 0.009 0.012 0.015 0.004 0.011 0.016 0.020

a1 0.271 0.025 0.095 0.310 0.378 0.030 0.120 0.414 0.505

100 a5 0.339 0.877 1.569 0.287 0.274 0.230 0.298 0.381 0.428

06 0.339 0.001 0.004 0.012 0.015 0.001 0.005 0.016 0.020

tThe stresses in the finite-element analysis are computed at the Gauss

points.
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Table 3. Nondimensionalized center deflection in a rectangular (b = 3a)
cross-ply (0'/900/00) plate (h = h- h3 - h/3) under sinu-soidal loading (BC1, E2  E 1  2 G12 z G
G2 3 = 0.2E2 , 12 = 1 13  0.5E2

Shear

Elasticity Solution Deformable Plate Solution [5] CPT
a/h Pagano 2x2x3 4x4x3 2x2x3 4x4x3 CFS 2x2 4x4 2x2 4x4 Solution

[15)

2 8.17 7.953 7.831 8.410 7.934 10.11 8.153 7.900 8.600 8.000 0.480
4 2.82 2.702 2.716 2.905 2.764 2.97 2.418 2.376 2.655 2.405 0.480

10 0.919 0.801 0.872 0.915 0.902 0.93 0.748 0.788 0.810 0.804 0.48020 0.610 0.411 0.540 0.589 0.600 0.60 0.425 0.530 0.560 0.574 0.480
50 0.508 0.137 0.305 0.494 0.513 0.51 0.150 0.327 0.490 0.509 0.480

100 0.503 0.042 0.134 0.481 0.501 0.50 0.050 0.153 0.480 0.500 0.480
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Table 4. Comparison of nondimensionalized stressest for three-layer
cross-ply (00/900/00) square plate under sinusoidal loading
(a/b = 1, hi - h/3)

a 30-Elasticity Theory Plate Theory [5]
SStress Pagano 2x2x3 4x4x3 2x2x3 4x4x3 2x2 4x4 2x2 4x4

Type [15) F F R R F F R R

0.938 0.550 0.619 0.097 0.122 0.274 0.337 0.273 0.336

2 5 0.309 0.257 0.267 0.212 0.236 0.124 0.295 0.263 0.290

06 0.070 0.044 0.050 0.025 0.032 0.037 0.046 0.038 0.046

01 0.755 0.400 0.470 0.162 0.205 0.324 0.406 0.330 0.408

4 5 0.282 0.221 0.247 0.209 0.244 0.284 0.340 0.303 0.345

v6 0.051 0.031 0.036 0.021 0.025 0.028 0.034 0.030 0.035

01 0.590 0.325 0.424 0.244 0.301 0.343 0.464 0.392 0.481

10 5 0.357 0.271 0.333 0.301 0.343 0.311 0.382 0.348 0.393

06 0.02q 0.017 0.022 0.014 0.017 0.017 0.023 0.020 0.024

01 0.552 0.233 0.381 0.267 0.327 0.267 0.440 0.408 0.499

20 5 0.385 0.426 0.361 0.327 0.369 0.295 0.381 0.360 0.405

06 0.023 0.010 0.016 0.012 0.014 0.011 0.019 0.017 0.021

1 0.541 0.080 0.225 0.274 0.335 0.098 0.280 0.414 0.504

50 5 0.393 0.757 0.992 0.335 0.377 0.248 0.338 0.363 0.408

0j6 0.022 0.003 0.009 0.011 0.013 0.004 0.011 0.017 0.020

01 0.539 0.024 0.092 0.276 0.336 0.030 0.120 0.414 0.505

100 05 0.395 0.878 1.570 0.337 0.378 0.229 0.290 0.364 0.409

06 0.021 0.001 0.004 0.011 0.013 0.001 0.005 0.016 0.020

tThe stresses in the finite-element analysis are computed at the Gauss
points.
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construction are presented in Tables 3 and 4. The loading, boundary

conditions, and material properties are the same as those given in Eqs.

(17), (18), and (19), respectively. The finite-element results are in

good agreement with the corresponding exact solutions [15] and plate

theory solutions [5].

Results of the Nonlinear Analysis

First, geometrically nonlinear analysis of isotropic plates is

performed and the results are compared with the results available in the

literature. A square isotropic plate (v = n.3) subjected to uniformly

distributed load is analyzed using simply supported boundary

conditions. Due to the biaxial symmetry, only one quadrant of the plate

is modeled with 4x4xl mesh of linear elements. Since membrane and

bending contributions dominate the stiffness matrix, full integration is

used to evaluate the element matrices. The present results for the

center deflection and stresses are compared in Figs. I and 2 with the

nonlinear thin plate theory (i.e., the von Karman plate theory)

solutions available in the literature [20,21]. From the results of the

isotropic plate one can conclude that the nonlinearity exhibited by the

3-n elasticity theory is relatively smaller than that included in the

classical von Karman plate theory [21] but larger than that in the shear

deformable plate theory [201.

Next, a symmetric cross-ply (00/900/00) square plate under

uniformly distributed load is analyzed. The boundary conditions and

material properties are given by Eqs. (18) and (19), respectively. The

3-n elasticity results for center deflection and stresses are compared

with the shear deformable plate theory results [20] in Figs. 3-5. The

effect of thickness (i.e., ratio of side to thickness) on the
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1.6

1.2

U 3 (,0.h/2)
h 3D-Elasticity theory (4x4x1 mesh)

0.8 ,/Levy (CPT)
SDPT (Wx mesh)

Ia

0. a=10 v v0.3

0 50 100 150 200 250 300

Load paramettr, 0 (S . a2I;
Figure 1 Load-deflection curves for simply supported isotropic

(v *0.3) square plate under uniform load.

17,
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16.0

12.0

x S 3-0 Elasticity (4x4x1 mesh)
x Levy (CPT)

4.0 SDPT k'44 mesh)

10 v 0.3

0

0 S0 100 150 200 250 300

Load parameter , P -q0 oF-
2

Figure 2 Center normal stress versus the load parameter for
simply supported isotropic (v a 0.3) square plate
under uniform load (;7x is computed at x - (0.0264,
0.0264, 0.0789 in 3-D elasticity theor and x
(0.0625, 0.0625, 0.1) in the plate theory)
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4.0 - 3-D elasticity (2x2x3 mesh) a/h u10

SOPT OAx mesh)

...3-D elasticity (2x2x3 mesh)~ ah=4

3.0 -- SOPT OAx) mesh

up(0,h)

h

2.0

1.0 ,

0
0 100 200 300 400

Load parameter, 1r 0

Figure 3 Load-deflection curves for cross-ply (0 0/900/00.
equal thickness layers) square plates under
uniformly distributed load (El /Ej 25, G1 2
G 13 *0.5E 2 jG 23 *0.2 E2 1 V 12 =0.5
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40

-30 elasticity (2x2x3 mesh)
SOPT (44 h'.esh)

20S a/h =10

0 L L

0 100 200 300 400 500

Load parameter, Tr q 0S4

Figure 4 Normal stress versus load parameter for
three-layer cross-ply (00/900/00) square
plate under uniform loading (S - a/h - 10).
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x " .0528,
.230)
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GxS2

60 . - x - (.6625, .0625,

40 - 0.25)
/.," _.. "- SDPT-vx at

/I./" (-.0625, .0625, 0.0)IS a

20 5~ 4

I I I I 1 I L _ . p

0
0 100 200 300 400 500

qoS4 r

Loading parameter, -

Figure 5 Center normal stress versus load parameter
for three-layer cross-ply (00/900/00) square
plate under uniform load (S -_ a/h - 4).
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SDPT (A mesh)

S-4 3D-Elasticity (4x4x2 mesh)
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0 100 200 300 400 500

Load parameter, =

Figure 6 Load-deflection curves for two-layer, cross-
ply (00/9001 square plate under uniformly
distributed load (E 25E2, G12  1 0.5E2,
G23  E 20'22  v12 4 0.25)
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SOPTx

=1 -3-D Elasticity 1- S 1
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P= =o
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Figure 7 Normal and shear stresses versus load parameter
for two-layer, cross-ply (00/900,S-ul0) square
plate under uniformly distributed load (~is
computed at x = (.0625, .0625, 0.1) in SDAT;
a is computed at x - (.4736, .4736, .0894) in
W~and at x - (.4375, .4375, 0.1) in SOPT).
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deflections and stresses can also he seen from Figs. 3-5. It should be

noted that the plate theory solutions deviate more from the 3-nl

elasticity solutions as the thickness increases. Also, it should be

pointed out that the stresses in the two theories are computed at

different locations of the plate, and therefore part of the difference

in the two solutions is attributable to the difference in the location

of points at which the stresses are calculated.

Finally, a two-layer cross-ply (00/900) square plate under

uniformly distributed load is analyzed and the plots of center

deflection and stresses versus the load parameter are presented in Figs.

6 and 7. Note that the nonlinearity exhibited by the 3-D elasticity

theory is less than that of the plate theory for load parameter values

less than 250.

5. CONCLUSIONS

A finite-element analysis of geometrically nonlinear, three-

dimensional theory of laminated plates is presented. It is found that

the shear deformable plate theory results are fairly accurate when

compared to the three-dimensional elasticity theory for side-to-

thickness ratios of 10 or more. The difference between the two

solutions is larger for a side-to-thickness ratio of 4. It is also

found that the stresses predicted by the plate theory are in larger

error than the deflections when compared to those predicted by the

three-dimensional elasticity theory. The reduced integration technique

is found to have an effect on the accuracy of the solution: reduced

integration is recommended for thin plates (a/h > 10) and full

integration for thick plates (a/h < 10), especially when geometric

nonlinearities are included.

*1,
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